
A symmetry group of a Thue - Morse quasicrystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 L435

(http://iopscience.iop.org/0305-4470/31/23/001)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) L435–L440. Printed in the UK PII: S0305-4470(98)91800-5
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Abstract. We present a method of coding general self-similar structures. In particular, we
construct a symmetry group of a one-dimensional Thue–Morse quasicrystal, i.e. of a nonperiodic
ground state of a certain translation-invariant, exponentially decaying interaction.

A symmetry group of a three-dimensional crystal consists of lattice translations, rotations,
and reflections. Starting from any point of a crystal, we can reach any other point,
successively applying different elements of the symmetry group of the crystal. It was
recently shown [1, 2] that certain one-dimensional quasicrystals can be built by successive
applications, on one of its points, of elements of certain discrete affine semigroups. Here we
describe a general method, based on ideas contained in [3, 4], of representing self-similar
structures by one-sided sequences of two symbols. In particular, we construct a symmetry
group of a Thue–Morse quasicrystal, i.e. of a nonperiodic ground state of a certain one-
dimensional classical lattice-gas model.

In one-dimensional classical lattice-gas models, every site of the latticeZ (the set of
all integers) can be occupied by a particle or be empty. Configurations of such models are
therefore elements of� = {0, 1}Z, where 1 denotes the presence and 0 denotes the absence
of a particle at any given lattice site. ByX(i) we denote the projection ofX to a lattice
site i ∈ Z.

The Thue–Morse example.We use the Thue–Morse substitution rule to construct a
configuration in�. We put 1 at the origin and perform alternatively to the right and
to the left the following substitution: 1→ 10, 0→ 01. After the first right substitution we
obtain 10, which is the configuration on [0, 1], then the substitution to the left gives us 0110
on [−2, 1] (the substitution to the left means that we replace 1 by 01 and 0 by 10), then
we obtain 01101001 on [−2, 5] and so on. The effect of performing the substitution to the
right or left is the same as taking a sequence of symbols already obtained, changing every
0 to 1 and every 1 to 0 and then placing the new sequence either right or left in relation to
the previous sequence.

In this manner we obtain a nonperiodic configurationXTM ∈ �. Note that if all
substitutions were performed to the right, we would obtain the well known one-sided Thue–
Morse configuration: 1001011001101001. . . [5–7].
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Let T be a translation operator, i.e.T : � → �, T (X)(i) = X(i − 1), X ∈ �. Let
GTM be a closure (in the product topology of the discrete topologies on{0, 1}) of the
orbit of XTM by translations, i.e.GTM = {T n(XTM), n > 0}cl . We call elements ofGTM

two-sided Thue–Morse configurations. It can be shown thatGTM supports exactly one
translation-invariant probability measureµTM on � [8, 9]. Such a measure is said to be
uniquely ergodic and can be obtained as the limit of averaging overXTM and its translates:
µTM = limn→∞(1/n)

∑n
i=1 δ(T

i(XTM)), where δ(T i(XTM)) is the probability measure
assigning probability 1 toT i(XTM). It means that all two-sided Thue–Morse configurations
look locally identical—any local pattern of particles appears in all of them with the same
density (defined uniformly in space). It is also said that such configurations belong to the
same isomorphism class.

The Thue–Morse measure is the unique ground state, i.e. a measure supported
by configurations with the minimal energy density, of certain exponentially decaying,
translation-invariant, four-body interaction [10–12]. Multilayer Thue–Morse superlattice
heterostructures were recently made by means of the molecular beam epitaxy and
were investigated by Raman scattering [13] and high resolution x-ray diffraction [14].
Nonperiodic order present in Thue–Morse configurations (and in Fibonacci configurations
defined below) was investigated in [15–17].

The Fibonacci example.We repeat the above procedure using the Fibonacci substitution:
0→ 01, 1→ 0. We put 0 at the origin and apply alternatively the above substitution to the
right and left. We obtain the configurationXF ∈ �. If all substitutions were performed to
the right we would get the right one-sided Fibonacci configuration 01001010. . . . Denote
by GF the closure of the orbit ofXF by translations. The elements ofGF are called two-
sided Fibonacci configurations.GF supports the uniquely ergodic measureµF which is
the unique ground state of any exponentially decaying, strictly convex, repulsive interaction
and a chemical potential which fixes the density of particles to be equal to the square of
the golden ratio(2/(1+√5))2 [18–20].

We shall now discuss a concept of self-similarity. LetX ∈ �. Let us assume that there
are two types of finite configurations, we denote them bys0, s1, such that we can group all
symbols ofX into successive local configurations of these types. We then constructYX ∈ �
in the following way. If 0∈ Z belongs to the support of a local configuration of thesj type,
thenYX(0) = j , j = 0, 1. Now, let si ∈ {s0, s1}, i = 1, 2, . . . be successive types of local
configurations to the right of the origin andsi ∈ {s0, s1}, i = −1,−2, . . . be successive
types of configurations to the left of the origin. Ifsi = sj , then we defineYX(i) = j .

Definition. A set of configurations,G ⊂ �, is self-similar if for some choice ofs0, s1, for
everyX ∈ G, YX ∈ G. Then the grouping of symbols ofX into local configurations of the
type s0 or s1 is also called self-similar.

The following proposition has been proven in [21].

Proposition 1.If a self-similar grouping of symbols, into given local configurationss0, s1,
of a configurationX ∈ � from a self-similar set is unique, thenX is nonperiodic.

Proof by contraposition.Let us assume thatX has periodp. We repeat the process of
grouping symbols untilp < max{|c0|, |c1|}, wherec0, c1 are local configurations ofX such
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that after all successive groupings they are ofs0 and s1 type respectively and|c0|, |c1| are
lengths of their supports. Now we translateX by p lattice units. X does not change.
However, c0 and c1 overlap with their translates. The translation therefore produces a
different grouping.

The Thue–Morse example.The setGTM of two-sided Thue–Morse configurations is self-
similar and a corresponding self-similar grouping is the followings0 = 01 → 0, s1 =
10→ 1.

The Fibonacci example.The setGF of two-sided Fibonacci configurations is self-similar
and a corresponding self-similar grouping is the followings0 = 01→ 0, s1 = 0→ 1.

We now present a method of coding self-similar sequences.
Let G ⊂ � be a self-similar set and letX ∈ G. If X(0) = 1, then we setCX(−1) = 1;

if X(0) = 0, thenCX(−1) = 0. If 0 ∈ Z belongs to the support ofsj , thenCX(0) = j .
Now we group the symbols ofX and constructYX. If 0 belongs to the support ofsj of
YX, thenCX(1) = j . We group the symbols ofYX, constructYYX and obtainCX(2). We
continue this procedure infinitely many times and obtain a sequenceCX(i),−1 6 i < ∞.
CX can be seen as an element of a direct productW = ⊗∞i=−1Z2, whereZ2 is the group of
two elements, 0 and 1, with the addition modulo 2 as a group action.

The Fibonacci example.The Fibonacci configurations are represented by elements of
WF = {W ∈ W,W(i)W(i + 1) = 0, for every i > −1}. This restriction onW ’s is
present in a corresponding representation of Penrose tilings [3, 4].

If CX ∈ WF has both infinitely many 0’s and 1’s, thenX is a two-sided Fibonacci
configuration, i.e. an element ofGF . Otherwise,X is a one-sided Fibonacci configuration.
For example,(0010101010. . .) representsXF and (0000000. . .) represents the right one-
sided Fibonacci configuration.

The Thue–Morse example.It is easy to see that every element ofW represents either a
two-sided Thue–Morse configuration, i.e. an element ofGTM or a one-sided Thue–Morse
configuration. For example,(11001100. . .) representsXTM , (111111. . .) represents the
right one-sided Thue–Morse configuration (with 1 at the origin) and(101010. . .) represents
the left one-sided Thue–Morse sequence. . .01101001 (with 1 at the origin) obtained by
successive applications of the Thue–Morse substitution to the left. Let us note that the
representation of the last configuration has infinitely many 0’s and 1’s. However, we would
like to represent one-sided configurations by sequences with either finitely many 0’s or
finitely many 1’s. To achieve this, we represent Thue–Morse configurations in another way.

Observe that every Thue–Morse configuration can be obtained by successive applications
of the Thue–Morse substitution either to the right or to the left. IfX(0) = 1, then let
C ′X(−1) = 1; if X(0) = 0, then letC ′(−1) = 0. We putC ′X(i) = 1 if the ith substitution
was performed to the right andC ′X(i) = 0 if the ith substitution was performed to the left.
SuchC ′X is again an element ofW.

Now, the right one-sided Thue–Morse configuration is still represented by(111111. . .)
but the left one is represented by(100000. . .) andXTM by (11010101. . .). It is easy to
see thatC ′X(i) = (CX(i − 1) + CX(i) + 1) mod 2. X ∈ GTM if and only if C ′X has both
infinitely many 0’s and 1’s.
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Obviously, for some of the elements ofW, corresponding Thue–Morse configurations
are related by translations, reflections or the transformation changing every 0 to 1 and every
1 to 0. We say that such Thue–Morse configurations are equivalent. LetU ⊂ W be a
subgroup ofW consisting of sequences with finitely many 1’s or finitely 0’s. We have the
following theorem.

Theorem 1.Equivalent classes of Thue–Morse configurations are represented by elements
of the coset groupW/U .

Proof. (a) Let X1, X2 ∈ GTM be related by a translationT n. We group successive symbols
of X1 andX2 into s0 and s1 configurations, then we group symbols ofYX1 andYX2. We
repeat grouping until, say in theith grouping, we obtain for bothX1 andX2 the local
configurations of the same type, eithers0 or s1, with supports containing both the origin and
n (they are related by the same translation asX1 andX2). It follows thatC ′X1

(j) = C ′X2
(j),

for everyj > i and thereforeC ′X1
= C ′X2

+ U , whereU(j) = 0 for j > i.
Conversely, letC ′X1

= C ′X2
+ U , where U(j) = 0 for j > i. Let c(k) be a

local configuration obtained by successive applications of substitutions corresponding to
C ′Xk (l), l 6 i, k = 1, 2. If c(1) and c(2) are related by a translation, thenX1 and X2

are related by the same translation. Ifc(1) and c(2) are related by a translation and the
interchanging of 0’s and 1’s, thenX1 andX2 are related by the same translation and the
interchanging of 0’s and 1’s. Observe that the first situation occurs if the absolute value of
the difference of the number of 1’s inC ′X1

(l) andC ′X2
(l), l 6 i, is even, otherwise we have

the second case.
(b) X1, X2 ∈ GTM are related by the interchanging of 0’s and 1’s if and only if

C ′X1
= C ′X2

+ (10000. . .).
(c) X1, X2 ∈ GTM are related by the reflection around the origin if and only if

C ′X1
= C ′X2

+ (01111. . .). �

Let us note that the above group acts on the whole setGTM of the Thue–Morse
configurations. We shall now construct a symmetry group which leaves every Thue–
Morse configuration invariant. This corresponds to crystal symmetries mentioned at the
very beginning of the paper.

A symmetry group of the Thue–Morse configurations.The following theorem gives us the
positions of particles, i.e. 1’s in a Thue–Morse configuration.

Theorem 2.Let X be a Thue–Morse configuration, with 1 at the origin, and represented by
C ′X ∈W. We have

X(i) = 1 iff i =
∞∑
k=0

(−1)(1+C
′
X(k))2kak (1)

whereak ∈ {0, 1}, k > 0 and in the sum there are finite and even numbers of nonzero terms.

Proof. Let us recall that the effect of performing the substitution to the right or to the left
is the same as taking a sequence of symbols already obtained, changing every 0 to 1 and
every 1 to 0 and then placing the new sequence right to or left to the previous sequence.
We call such sequences blocks. If we start with 1 at the origin, then every second block
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placed right to or left to the previous block begins with 1. LetX(i) = 1. We identify the
first block containing the origin to whichi belongs and call it the exterior block. Ifi is not
at the beginning of this block, we then have to find out to which one of the two subblocks
it belongs. We continue this procedure untill we identify the block such thati is at the
beginning of it. If the exterior block begins with 1, then its position is given by the sum
in (1) with an even number of nonzero terms and then we have to identify an even number
of additional subblocks; to obtain (1) we have to add to the position of the left end of the
exterior block an even number of different powers of 2. In the other case, the exterior block
begins with 0 and its position is given by the sum in (1) with an odd number of nonzero
ai ’s, but we have to identify an odd number of additional subblocks. For example, in the
right one-side Thue–Morse sequence represented by(1111111. . .), all exterior blocks begin
with 1 at the origin. �

Denote bySTM the set of all sequences{ai, i > 0} such thatai = 1 for finite and even
number of i’s and otherwiseai = 0. STM is a subgroup of⊗∞i=0Z2. It is generated by an
infinite number of elements (with two successive 1’s and 0’s otherwise). A Thue–Morse
quasicrystal is generated by successive applications of elements ofSTM to the particle at
the origin.

More precisely, positions of particles in a two-sided Thue–Morse configurationX ∈
GTM is a subsetZX ⊂ Z. The coding ofX, C ′X, gives us an addition,+X, in ZX, such that
(ZX,+X) is a group.

For example,ZXTM is generated by{(−1)k+12k : k > 0}.

Part of this work was done when JM visited Laboratoire de Physique Théorique et
Mathématique, Université Paris 7. JM thanks Laboratoire for their hospitality and financial
support and the Polish Scientific Committee for Research, for financial support under
grant no KBN 2 P03A 015 11. JM thanks Aernout van Enter for many discussions and
collaborations on Thue–Morse systems and comments about this paper.
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